(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
f(g(x)) → f(a(g(g(f(x))), g(f(x))))
Rewrite Strategy: FULL
(1) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(2) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
f(g(x)) → f(a(g(g(f(x))), g(f(x))))
S is empty.
Rewrite Strategy: FULL
(3) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(4) Obligation:
TRS:
Rules:
f(g(x)) → f(a(g(g(f(x))), g(f(x))))
Types:
f :: g:a → g:a
g :: g:a → g:a
a :: g:a → g:a → g:a
hole_g:a1_0 :: g:a
gen_g:a2_0 :: Nat → g:a
(5) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
f
(6) Obligation:
TRS:
Rules:
f(
g(
x)) →
f(
a(
g(
g(
f(
x))),
g(
f(
x))))
Types:
f :: g:a → g:a
g :: g:a → g:a
a :: g:a → g:a → g:a
hole_g:a1_0 :: g:a
gen_g:a2_0 :: Nat → g:a
Generator Equations:
gen_g:a2_0(0) ⇔ hole_g:a1_0
gen_g:a2_0(+(x, 1)) ⇔ g(gen_g:a2_0(x))
The following defined symbols remain to be analysed:
f
(7) RewriteLemmaProof (EQUIVALENT transformation)
Proved the following rewrite lemma:
f(
gen_g:a2_0(
+(
1,
n4_0))) →
*3_0, rt ∈ Ω(2
n)
Induction Base:
f(gen_g:a2_0(+(1, 0)))
Induction Step:
f(gen_g:a2_0(+(1, +(n4_0, 1)))) →RΩ(1)
f(a(g(g(f(gen_g:a2_0(+(1, n4_0))))), g(f(gen_g:a2_0(+(1, n4_0)))))) →IH
f(a(g(g(*3_0)), g(f(gen_g:a2_0(+(1, n4_0)))))) →IH
f(a(g(g(*3_0)), g(*3_0)))
We have rt ∈ Ω(2n) and sz ∈ O(n). Thus, we have ircR ∈ Ω(2n)
(8) BOUNDS(2^n, INF)